منابع مشابه
On-Shell Recursion Relations for Generic Theories
We show that on-shell recursion relations hold for tree amplitudes in generic two derivative theories of multiple particle species and diverse spins. For example, in a gauge theory coupled to scalars and fermions, any amplitude with at least one gluon obeys a recursion relation. In (super)gravity coupled to scalars and fermions, the same holds for any amplitude with at least one graviton. This ...
متن کاملDifferential Recursion Relations for Laguerre Functions on Symmetric Cones
Let Ω be a symmetric cone and V the corresponding simple Euclidean Jordan algebra. In [2, 5, 6, 8] we considered the family of generalized Laguerre functions on Ω that generalize the classical Laguerre functions on R. This family forms an orthogonal basis for the subspace of L-invariant functions in L(Ω, dμν), where dμν is a certain measure on the cone and where L is the group of linear transfo...
متن کاملOn-shell recursion relations for all Born QCD amplitudes
We consider on-shell recursion relations for all Born QCD amplitudes. This includes amplitudes with several pairs of quarks and massive quarks. We give a detailed description on how to shift the external particles in spinor space and clarify the allowed helicities of the shifted legs. We proof that the corresponding meromorphic functions vanish at z → ∞. As an application we obtain compact expr...
متن کاملOn-Shell Recursion Relations for Effective Field Theories.
We derive the first ever on-shell recursion relations applicable to effective field theories. Based solely on factorization and the soft behavior of amplitudes, these recursion relations employ a new rescaling momentum shift to construct all tree-level scattering amplitudes in the nonlinear sigma model, Dirac-Born-Infeld theory, and the Galileon. Our results prove that all theories with enhance...
متن کاملCasimir recursion relations for general conformal blocks
We study the structure of series expansions of general spinning conformal blocks. We find that the terms in these expansions are naturally expressed by means of special functions related to matrix elements of Spin(d) representations in Gelfand-Tsetlin basis, of which the Gegenbauer polynomials are a special case. We study the properties of these functions and explain how they can be computed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1991
ISSN: 0021-9045
DOI: 10.1016/0021-9045(91)90102-g